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Abstract. The Brueckner G-matrix for a slab of nuclear matter is analyzed in the singlet 1S and triplet
3S+3D channels. The complete Hilbert space is split into two domains, the model subspace S0, in which the
two-particle propagator is calculated explicitly, and the complementary one, S′, in which the local potential
approximation is used. This kind of local approximation was previously found to be quite accurate for the
1S pairing problem. A set of model spaces S0(E0) with different values of the energy E0 is considered,
E0 being the upper limit for the single-particle energies of the states belonging to S0. The independence
of the G-matrix on E0 is assumed as a criterion for the validity of the local potential approximation. It
turns out that such an independence holds within few percents for E0 = 10–20 MeV, for both channels
under consideration. The G-matrix within the local potential approximation is used for justifying a simple
microscopic model for the coordinate-dependent scalar-isoscalar component f(r) of the Landau-Migdal
amplitude in terms of the free T -matrix.

PACS. 21.30.Fe Forces in hadronic systems and effective interactions – 21.65.+f Nuclear matter – 21.60.-n
Nuclear-structure models and methods

1 Introduction

The most reliable predictions of nuclear properties
come from phenomenological approaches including the
macroscopic-microscopic method [1–3], and, at a more
fundamental level, the finite Fermi systems (FFS) theory
[4–6], the HF method with effective forces [7,8] and the
new versions of the energy functional method [9]. These
methods, being comparatively simple, permit to carry out
systematic calculations for atomic nuclei. On the other
hand, being phenomenological, these approaches need a
set of adjustable parameters. This point appears especially
delicate when one is dealing with new types of nuclear
systems, e.g., nuclei in the drip line vicinity. Indeed, any
extrapolation of phenomenological parameters found for
stable nuclei is hardly reliable in this case. Therefore the
old problem of the ab initio calculation of these parameters
is of importance not only from a heuristic point of view
but also from the practical one. In this paper, we present
a rather simple and powerful tool for the development of
a nuclear theory starting from a free NN interaction. We
give also an example of the application of this method
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by constructing a realistic semi-microscopic model for the
scalar-isoscalar Landau-Migdal amplitude.

In the application of the microscopic theory of nuclear
matter to finite nuclei (see, e.g., the monographs [10] and
[11]) the main restriction is the so-called local density ap-
proximation (LDA). The LDA works reasonably well in-
side a nucleus but fails at the surface where there is a do-
main of density values for which nuclear matter is unsta-
ble. However, it is impossible to develop a self-consistent
nuclear theory without any consistent description of the
nuclear surface. Indeed, just in the surface region the nu-
clear mean field sharply changes from zero outside the nu-
cleus to a constant value inside. In terms of the FFS the-
ory, this is associated with a sharp variation of the scalar-
isoscalar Landau-Migdal amplitude f from a strongly neg-
ative (attractive) value outside the nucleus to almost zero
inside. A consistent description of this variation is of pri-
mary importance for nuclear theory. We intend to develop
an approach to this problem based on the Brueckner the-
ory for nonuniform systems beyond LDA.

Recently [12], dealing with 1S-pairing problem for
semi-infinite nuclear matter, we developed a method
of solving the Bethe-Goldstone (BG) equation with a
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separable form of the Paris NN potential without using
any local approximation. The same method was applied
to the case of the slab geometry in refs. [13,14]. Though
the separable form of the NN interaction simplifies cal-
culations significantly, they remain to be rather cumber-
some and much CPU time consuming. To circumvent this
difficulty, we devised a new version of the local approx-
imation, that was implemented for the study of the ef-
fective pairing interaction Vp

eff [12]. To distinguish it from
the standard LDA, we named it as the local potential ap-
proximation (LPA). The effective interaction is associated
with the splitting of the complete Hilbert space S into two
domains. The first one is the model subspace S0, in which
the gap equation is written down in terms of the effec-
tive interaction Vp

eff. The second one is the complementary
subspace S′, in which the equation for Vp

eff is obtained in
terms of the free NN interaction V. In this subspace, the
pairing effects are not significant, therefore the equation
for Vp

eff has the form of the BG equation. Dealing with
the pairing problem, the model space was taken in a form
convenient for nuclear application, which includes all the
single-particle states with negative energies ελ. The LPA
is related to the calculation of the two-particle propagator
in the complementary space which enters the equation for
Vp

eff. Roughly speaking, the LPA procedure consists in re-
placing the exact BG propagator by a suitable form taken
from infinite nuclear matter. For a fixed value of the av-
erage centre-of-mass (CM) x-coordinate X = (X12 +X34)
of incoming and outcoming nucleons (the x-axis is per-
pendicular to the layer), the propagator is supposed to be
equal to the one of nuclear matter in the potential well
V (X). Such an approximation turned out to be accurate
at a level of a few percent even at the surface [12]. This
was shown by a comparison of the direct solution for Vp

eff
with the LPA one.

From the computational point of view, the problem of
finding the Landau-Migdal interaction amplitude in terms
of the Brueckner G-matrix is much more complicated
than the pairing problem. First, the additional triplet 3S-
channel (coupled with the 3D one) should be considered
for which the calculations turned out to be more compli-
cated than those for the singlet 1S-channel. Second, in-
stead of fixing the value of the total perpendicular mo-
mentum P⊥ = 0 as in the pairing problem, the integral
over P⊥ occurs in this case. Though the direct numerical
solution of the problem, in principle, is possible [15], it
looks very difficult. Therefore it is natural to attempt to
use LPA for solving the BG equation for the G-matrix that
significantly simplifies the calculations. In the case of the
singlet 1S-channel, the accuracy of LPA for the BG equa-
tion is just the same as in the pairing problem because
the corresponding two-particle propagators in the com-
plementary space are the same. As to the triplet channel,
applicability of the LPA is not obvious at all. The main
goal of this paper is to clarify the latter point.

In the case of the BG equation, there is no evident gain
in introducing the effective interaction and it seems more
reasonable, after splitting the Hilbert space as S = S0+S′,
to formulate the LPA procedure in a direct way. Accord-

ing to that splitting, the two-particle propagator A in the
BG equation can be written as the sum of A = A0 + A′.
The model space term, A0, should be calculated exactly,
whereas the second one, A′, within LPA. It is clear that
the applicability of the LPA depends on the choice of the
model space S0. Indeed, all the quantum and finite-range
effects originate mainly from the states nearby the Fermi
surface whose contribution to the BG equation is strength-
ened by the small values of the energy denominator in the
two-particle propagator. These contributions produce the
long-range components of A and should be taken into ac-
count exactly. At the same time, the individual contribu-
tion of a far-lying state is negligible and only the sum of a
huge number of such states is important. They produce the
short-range term of A and can be considered within the
local approximation. Hence, the accuracy of LPA should
depend on the choice of the model space: the wider is S0,
the more accurate it is. We use this simple physical idea to
impose a criterion of the applicability of LPA. We define
the model space S0(E0) including all the single-particle
states with the energies ελ < E0 which is more general
than that for the pairing problem1. It is obvious that a
larger E0 corresponds to a higher accuracy of the LPA.
We consider the LPA to be valid at some value of E0 if
the G-matrix does not practically change with additional
increase of E0.

The paper is organized as follows. Section 2 contains
the BG equation for the slab of nuclear matter with sep-
arable NN forces. In sect. 3 the splitting of the Hilbert
space in the model subspace defined by the cut-off energy
E0 and its complementary subspace is discussed. In addi-
tion, the LPA for the BG equation is introduced. In sect. 4
the validity of the LPA for the calculation of the G-matrix
in the singlet 1S-channel is analyzed for different values of
E0. In sect. 5 the analysis is extended to the triplet 3S+3D
channel. In sect. 6 the G-matrix obtained within LPA is
used to justify a simple microscopic model for the scalar-
isoscalar component f(r) of the Landau-Migdal amplitude
in terms of the off-shell free T -matrix suggested recently
[16]. Section 7 contains a summary of the results.

2 Bethe-Goldstone equation for the slab
system

Let us consider the BG equation for the G-matrix of two
nucleons at the Fermi surface, i.e. with the single-particle
energies ελ = µ, where µ is the chemical potential of the
system under consideration. In a short notation it reads:

G(E) = V + VA(E)G(E), (1)

where V is the free NN potential, E = 2µ, and A is the
two-particle propagator which is determined by the inte-
gration over the relative energy of the product (GpGp) of
two particle single-particle Green’s functions. The contri-
bution (GhGh) of two holes is neglected.

1 The latter corresponds to E0 = 0.
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To speed up the convergence it is convenient to renor-
malize eq. (1) in terms of the free off-shell T -matrix taken
at negative energy E = 2µ. The latter obeys the Lippman-
Schwinger equation:

T (E) = V + VAfr(E)T (E), (2)

where Afr(E) is the propagator of two free nucleons with
the total energy E.

The renormalized BG equation has the form:

G = T + T (A − Afr)G. (3)

We consider a nuclear-matter slab of thickness 2L
placed into the one-dimensional Saxon-Woods potential
V (x) symmetrical with respect to the point x = 0 with
depth of V0 = 50 MeV, the diffuseness parameter d = 0.65
fm, and L = 8 fm.

We use the separable version [17,18] of the Paris NN
potential [19] which for the 1S0-channel has the 3×3 form:

V(k,k′) =
∑
ij

λijgi(k2)gj(k′2). (4)

For the triplet 3S1 + 3D1 channel, a similar 4 × 4 ex-
pansion (4) is valid with a formal substitution gi(k2) →
ĝi(k2), where the column ĝi contains two components:

ĝi(k2) =

(
gL=0

i (k2)

gL=2
i (k2)

)
, (5)

L being the relative orbital momentum in the CM system.
The scheme of solving the BG equation for a slab of

nuclear matter in the mixed coordinate-momentum repre-
sentation, which has been devised in ref. [15], is adopted
also here. Therefore we write down in the explicit form
only those equations which are necessary for understand-
ing the procedure and refer to ref. [15] for details. We con-
sider first the singlet channel S = 0. As it was mentioned
above, all relations remain valid for the triplet channel as
well after replacing gi(k2) → ĝi(k2).

The separable form (4) of the NN potential in eqs. (1)
and (2) induces similar expansions for the G-matrix

G(k2
⊥, k′2

⊥ ,P⊥;x1, x2, x3, x4;E) =∑
ij

Gij(X,X ′;E,P⊥)gi(k2
⊥, x)gj(k′2

⊥ , x′), (6)

and T -matrix

T (k2
⊥, k′2

⊥ ,P⊥;x1, x2, x3, x4;E) =∑
ij

Tij(X−X ′;E,P⊥)gi(k2
⊥, x)gj(k′2

⊥ , x′). (7)

Here the form factors gi(k2
⊥, x) in the mixed represen-

tation are determined by the inverse Fourier transforma-
tion of gi(k2

⊥+k2
x) with respect to the variable kx. Their

analytical form can be found in ref. [12] for the singlet
channel and in ref. [15], for the triplet one. The obvious

notation for the CM and relative coordinates in the x-
direction is used in eqs. (6) and (7). Of course, the Tij

coefficients depend only on the difference t = X − X ′ of
the CM coordinates. In the perpendicular direction, the
total momentum P⊥ and the relative momentum k⊥ are
introduced.

Substitution of eqs. (6) and (7) into eq. (3) results in
a set of one-dimensional integral equations:

Gij(X,X ′;E,P⊥) = Tij(X−X ′;E,P⊥)

+
∑
lm

∫
dX1 dX2 Til(X − X1;E,P⊥)

× δBlm(X1,X2;E,P⊥)Gmj(X2,X
′;E,P⊥) , (8)

where
δBlm = Blm − Bfr

lm (9)

is the difference between the convolution Blm of the two-
particle propagator A with two form factors gl, gm and
the analogous convolution Bfr

lm for the free propagator Afr.
The explicit form of Blm is as follows:

Blm(X,X ′;E,P⊥) =∑
nn′

∫
dk⊥
(2π)2

(1 − nλ) (1 − nλ′)
E − P 2

⊥/4m − εn − εn′ − k2
⊥/m

×gl
nn′(k2

⊥,X) gm
n′n(k2

⊥,X ′). (10)

Here we have used a short notation of λ = (n,p⊥),
λ′ = (n′,p′

⊥), p⊥ = P⊥/2 + k⊥, p′
⊥ = P⊥/2 − k⊥, and

nλ = θ(µ−ελ), where ελ = εn + p2
⊥/2m, and εn are the

eigenenergies of the one-dimensional Schrödinger equa-
tion with the Saxon-Woods potential. The corresponding
eigenfunctions yn(x) (they are chosen to be real) enter the
matrix elements of the form factors

gl
n,n′(k2

⊥,X) =
∫

dx gl(k2
⊥, x) yn(X+x/2)yn′(X−x/2) .

(11)
It should be noted that the symbolic sum over nn′ in
eq. (10) actually includes the summation over discrete
states and the integration over the continuum spectrum
with the standard substitution

∑
n → ∫

dp/2π.
In the singlet channel, the BG equation for the G-

matrix is very similar to the one for the effective pairing
interaction [12]. Just as in the latter case, it is convenient
to extract the singular δ-form Born term from the com-
plete G-matrix:

G = V + δG. (12)

The equation for the correlation component δG of the
G-matrix can be readily found from eq. (1):

δG = VAV + VAδG. (13)

An analogous extraction of the Born term should be
made also for the T -matrix:

T = V + δT. (14)

As a result, the renormalized eq. (3) yields

δG = F + T (A − Afr)δG, (15)
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where the inhomogeneous term is

F = δT + T (A − Afr)V. (16)

The explicit transformation of eqs. (15), (16) to a form
similar to eq. (8) is quite obvious. A simplification of the
numerical procedure for solving eq. (15) in the slab system
under consideration can be made using the parity conser-
vation which follows from the symmetry of the Hamilto-
nian under the axis reflection x → −x. As a result, the
eigenfunctions yn can be divided into even, y+

n , and odd,
y−

n , functions. Then the two-particle propagator in the
above equations splits into the sum

A = A+ + A− (17)

of the even and odd components. The first one, A+, orig-
inates from the terms of the sum in eq. (10) containing
states (λ, λ′) with the same parity, and the second one,
A−, from those with opposite parity. So long as the NN
potential V does conserve the parity, the propagators A+

and A− do not mix in the BG equation. Therefore, the
correlation part of the G-matrix is also a sum of the even
and odd components,

δG = δG+ + δG−, (18)

which obey the separated equations

δGπ = VAπV + VAπδGπ, (19)

π is the parity.
It is obvious that the integral equation (19) can be re-

duced to the form containing positive x-values only which
simplifies the calculations. This equation should be solved
for both values of π separately, then the complete G-
matrix could be found from eqs. (12),(18).

All the above general equations remain valid for the
triplet channel S = 1. The main change occurs in the
definition of the convolution integral in eq. (10). For the
triplet channel it has the form

BS=1
lm (X,X ′;E,P⊥) =∑
nn′

∫
dk⊥
(2π)2

(1 − nλ) (1 − nλ′)
E − P 2

⊥/4m − εn − εn′ − k2
⊥/m

×
(
g
(0)l
nn′ (k2

⊥,X) g
(0)m
n′n (k2

⊥,X ′)

+ g
(2)l
nn′ (k2

⊥,X) g
(2)m
n′n (k2

⊥,X ′)
)

. (20)

It should be noted also that all multipole expansions
of eqs. (6) and (7) take the form of 2×2 matrices. For ex-
ample, let us write down the components of the G-matrix
in the explicit form

GLL′
(k2

⊥, k′2
⊥ ,P⊥;x1, x2, x3, x4;E) =∑

ij

Gij(X,X ′;E,P⊥) g
(L)
i (k2

⊥, x)g(L′)
j (k′2

⊥ , x′), (21)

where L,L′ are equal to 0 or 2.

3 Choice of the model space and the local
potential approximation

The main computational problem of solving the BG equa-
tion for the slab system is connected with the calcula-
tion of the propagators, eqs. (10) and (20). The reason
for introducing the model space S0(E0), by splitting the
complete Hilbert space S = S0 + S′ and using the LPA
in the complementary space S′, is as follows. The sub-
space S0(E0) contains all the two-particle states (λ, λ′)
with both single-particle energies ελ, ελ′ smaller than E0

2.
In the complementary subspace, S′(E0), one of these en-
ergies or both of them are large, max(ελ, ελ′) > E0. In
the model space, the contribution of each individual state
(λ, λ′)3 to the sum of eq. (10) or eq. (20) is strengthened,
in comparison with the analogous one in the complemen-
tary space, due to a small value of the energy denomina-
tor. Such contributions produce the long-range terms of
the BG propagator A [15] and must be calculated in a
direct way. On the contrary, in the complementary sub-
space no individual state (λ, λ′) is important and only
wide intervals of the integration over k⊥ significantly con-
tribute to A. The corresponding term of the BG propa-
gator is sharply peaked and is mainly determined by the
local properties of the system [15]. Therefore it is natural
to use for it some kind of local approximation. For the
problem under consideration, it seems to be more natural
to use LPA rather than LDA because the BG propagator
in the vicinity of the point X is determined directly by the
potential well V (X) but not by the density, ρ(X). At the
same time, in the surface region there is no simple local
relation between ρ(X) and V (X).

The splitting of the Hilbert space S = S0 + S′ results
in the representation of the BG propagator as a sum of
two terms:

A = A0 + A′, (22)

where A0 contains the states (λ, λ′) which belong to the
model space, A′ including the rest. In accordance with
the above considerations, we calculate the model space
propagator A0 explicitly, but use LPA for the remaining
term A′. Obviously, the accuracy of LPA becomes higher
with the model space S0 becoming wider. We consider
LPA to be good at some value of E0 if the results for
the G-matrix do not practically change with additional
increase of E0.

The LPA procedure, in principle, is the same for both
the channels under consideration and it is very close to the
one for the pairing problem [12], the latter corresponding
to the choice E0 = 0. Namely, for fixed values of the CM
coordinates X12,X34, the convolution integral in eq. (10)
for S = 0 (or eq. (20), for S = 1 ) is replaced by the corre-
sponding integral for nuclear matter put in the constant
potential well V0 = V (X), where X = (X12 + X34)/2,
which depends on the difference of the CM coordinates

2 In fact, the difference ελ−µ is small. Just such differences
enter the denominator of eq. (10) at E = 2µ.

3 The “individual” state means the fixed value of n, n′ and
a small interval of integration over k⊥.
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Fig. 1. The profile function δG11(X, X ′ = 0) in the singlet
channel for E0 = 20 MeV.

t = X12 − X34:

BLPA
lm (X12,X34;E,P⊥) = Binf

lm(V [X], t;E,P⊥). (23)

In practice, for a fixed value of the chemical potential µ
and the cut-off energy E0 and a given set of the potential
depths Vn, we calculate a basic set Binf

lm([Vn], t;E = 2µ) of
nuclear matter propagators. In fact, we used a sequence
of Vn = δV ·(n − 1)) with the step δV = 2 MeV. At a
fixed coordinate set Xk, the elements of the LPA prop-
agator matrix BLPA

lm (Xi,Xk) are found as follows. First,
we find the potential depth V (X0 = (Xi + Xk)/2). Then,
for a fixed value of t = |Xi − Xk|, the LPA propagator is
found by a linear extrapolation of two neighboring values
of Binf

lm([Vn], t;E), Binf
lm([Vn+1], t;E), under the condition

that the inequality Vn < V (X0) < Vn+1 is satisfied. The
convolution integral Bfr

lm for the free propagator Afr, by
definition, coincides with Binf

lm([V1 = 0], t;E). Details can
be found in refs. [12,15].

4 Validity of the LPA for the singlet channel

Up to now, we dealt with the general form of the BG equa-
tion for the slab system containing the total perpendicular
momentum P⊥ as a parameter. As it was discussed above,
the “dangerous” terms of the propagator (or of the con-
volution integrals in eq. (10)) which belong to the model
space and should be considered explicitly, occur due to
the small value of the corresponding denominators in the
sum of eq. (10). It is obvious that they become more dan-
gerous if the value of P⊥ becomes smaller. Hence the case
of P⊥ = 0 is most crucial for validity of LPA. Therefore,
we consider just this particular “bad” case for the LPA.
Then, we only focus on µ = −8 MeV which is a chemi-
cal potential typical of stable nuclei. Thus, we put in all
the above equations P⊥ = 0, E = −16 MeV (omitted for
brevity from now on).

-2 0 2
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-0,08

-0,06

-0,04

X, fm

i j = 22

0,00

0,04

0,08
i j = 12

-0,10

-0,05

0,00

δG i j(X,X'=0), GeV fm3

i j = 11

Fig. 2. The profile functions δGij(X, X ′ = 0) in the singlet
channel for E0 = 0 (dotted lines), E0 = 10 MeV (dashed lines),
and E0 = 20 MeV (solid lines).

As discussed above, the BG equation for the corre-
lation part of the G-matrix, eq. (13), has a fixed parity
π. Therefore, we deal with eq. (19) with fixed π which
is defined only for positive x. After finding the convolu-
tion integrals in eq. (10) and those for the free propa-
gator Afr, the kernel of eq. (15) and the inhomogeneous
term, eq. (16), are derived by direct integration. Then
one obtains a set of integral equations for six indepen-
dent components of δGπ

ij(X,X ′) (similar to eq. (8)) which
can be solved numerically [12], [15]. Finally, we find the
total correlation δG-matrix, eq. (18), with components
δGij(X,X ′) or, from eq. (12), the complete G-matrix with
components Gij(X,X ′). They differ by a trivial δ-function
term

δGij(X,X ′) = Gij(X,X ′) − λijδ(X − X ′). (24)

The extraction of the latter makes the quantity under
consideration more convenient for analysis and graphi-
cal representation. Therefore, as a rule, we will deal only
with the correlation part of the G-matrix, and not with
the complete one. One additional remark should be also
made before discussing the results. Following ref. [12], we
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Fig. 3. The profile functions δGij(X, X ′ = 8) in the singlet
channel for E0 = 0 (dotted lines), E0 = 10 MeV (dashed lines),
and E0 = 20 MeV (solid lines).

change the original normalization [17,18] of the expan-
sion in eq. (4) so that gi(0) = 1. In this case, the ab-
solute values of the λij-coefficients give direct informa-
tion on the strength of the corresponding terms of the
force. Their values (in MeV·fm3) are as follows: λ11 =
−3.659 · 103, λ12 = 2.169 · 103, λ22 = −1.485 · 103 and
λ13 = −2.36 · 101, λ23 = 5.76 · 101, λ33 = 1.72 · 101. The
strengths of all the components containing only the indices
i = 1, 2 are much stronger (by two orders of magnitude)
than those with the index i = 3. Therefore, the latter are
important only for large momenta which come virtually to
the BG equation or the Lippman-Schwinger one4. If one
analyzes the matrix elements of the G-matrix over the
nuclear wave functions, the typical momenta k � kF ap-
pear for which the contribution of the small components
is negligible. Therefore, as a rule, we concentrate on the
“big” components in a qualitative analysis. Of course, in
the calculations all the terms λik are taken into account.

4 Their contribution at high momenta k turns out to be
noticeable because the form factor g3(k) is growing with k,
whereas g1(k) and g2(k) are vanishing with k rapidly.

We made a series of calculations of the G-matrix for
several values of the cut-off energy E0 = 0, 10, 20 MeV
to analyze the dependence of the results on this parame-
ter. To present the results we draw the profile functions
δGij(X,X ′ = X0) of the correlation term of the G-matrix
at several values of X0 and the zero moment of the G-
matrix:

Ḡij(X) =

∞∫
−∞

dtGij(X,X + t). (25)

A typical example of the profile function of
δG11(X,X ′ = 0) is shown in fig. 1 for the case of the
model space with the cut-off energy E0 = 0. It has a sharp
peak at the point X = X ′. In such a scale, similar curves
for E0 = 10 and 20 MeV are distinguishable from that
for E0 = 0 only after magnification. Such magnified pro-
file functions for large components with ij = 11, 12, 22 are
shown in fig. 2, for X ′ = 0, and in fig. 3, for X ′ = 8 fm.
It is easily seen that already the difference between the
curves for E0 = 0 and E0 = 10 MeV is rather small. As
to that for E0 = 10 MeV and E0 = 20 MeV, it looks
negligible.

To analyze the dependence of the G-matrix on E0 in a
more quantitative way, it is worth to consider the zero mo-
ments, eq. (25), at different values of E0. They are shown
in fig. 4 for the same large components and, as an exam-
ple, for one small component, ij = 13. One sees that a
difference, at a level of a few percent, exists between the
curves for E0 = 0 and E0 = 10 MeV and again the ad-
ditional increase of E0 from 10 MeV to 20 MeV does not
practically influence the results. This is true not only for
big components, but also for small ones.

Finally, we calculated the “Fermi-averaged” G-matrix
in the 1S-channel:

〈GF〉S=0(X) =
∑
ij

Ḡij(X) gi(k2
F(X)) gj(k2

F(X)), (26)

where we have introduced the local Fermi momentum as
kF(X) =

√
2m(µ − V (X)) at µ − V (X) > 0 and which

otherwise takes zero value. Such an average is needed
to calculate the Landau-Migdal amplitude in terms of
the G-matrix [15]. To this respect, one remark should
be made. Though the profile functions Gij(X,X ′) are
strongly peaked at the point X = X ′, the long range
“tails”, which are hardly seen “by eyes” in fig. 1, also con-
tribute to the zero moment, eq. (25)5. These terms of the
G-matrix appear due to states entering the model space
and their contribution to the integral (25) was analyzed
in [15] for the case of E0 = 0. When one deals with the
the Landau-Migdal amplitude which is supposed to be a
short-range coordinate function it is natural to cut these
tails. In ref. [15] a recipe was suggested to use the Fermi
averaged G-matrix, eq. (26), with the zero moments “with
cut-off” which are defined by the integral appearing in the
eq. (25), but with limits of |t| < tc, tc = 3 fm. Of course,
for the validity of LPA it is not important what kind of

5 This contribution depends on ij and is, as a rule, not
greater than 10–20%.
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Fig. 4. The zero moments Ḡij(X) in the singlet channel for E0 = 0 (dotted lines), E0 = 10 MeV (dashed lines), and E0 = 20 MeV
(solid lines).

zero moment is used in eq. (26). However, we use here the
same recipe for the Fermi averaged G-matrix as in ref. [15]
because it is more physical. This quantity is shown in fig. 5
for the same three values of E0 together with the analo-
gous average value of the free off-shell T -matrix:

〈TF〉S=0(X)=
∑
ij

T̄ij(E =2µ) gi(k2
F(X)) gj(k2

F(X)), (27)

where the zero moments T̄ij of the T -matrix are defined in
the same way as in eq. (25). In this case, the introduction
of the cut-off with tc = 3 fm does not practically change
the integral. Of course, it is X-independent.

Again, the difference between the Fermi-averaged G-
matrix for E0 = 10 MeV and that for E0 = 20 MeV is
negligible. Their deviation from the one corresponding to
E0 = 0 is also very small everywhere except in the surface
region. It should be noted that the difference between the
average G-matrix and T -matrix is rather small. A simi-
lar property was found previously [13,14] for the effective
pairing interaction in the 1S-channel.

Analysis of figs. 2-5 leads us to the conclusion that for
the singlet channel S = 0 the LPA works pretty well for
E0 = 10–20 MeV. Moreover, within the accuracy of a few
percent, it is also valid for E0 = 0. The latter agrees with
the analysis of ref. [12], where the LPA was introduced for
the pairing problem in the 1S-channel.

5 Validity of the LPA for the triplet channel

In general, the calculation scheme for the triplet 3S + 3D
channel is very similar to that for the singlet one, though

0 2 4 6 8 10 12

-2,0

-1,5

-1,0

-0,5

0,0
<G

F
>(X)

S=0
, GeV fm3

X, fm

Fig. 5. The Fermi-averaged G-matrix in the singlet channel
〈GF〉S=0(X) for E0 = 0 (dotted line), E0 = 10 MeV (dashed
line), and E0 = 20 MeV (solid line) and the Fermi-averaged
T -matrix (thin solid line).

the calculations become more cumbersome in this case.
Indeed, first, we have to face ten independent components
Gij(X,X ′) and ten integral equations (8) for them instead
of the six of the singlet case. Second, the calculation of the
convolution integral of eq. (20) in the triplet channel is also
more difficult than that of eq. (10). Therefore, the problem
of simplifying these calculations is even more important
than in the singlet channel.

Contrarily to the singlet case, now it is difficult to sep-
arate the multipole terms into the “large” and “small”
ones. Again we changed the original normalization [17]
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Fig. 6. The same as in fig. 2 for the triplet channel.

of the expansion, eqs. (4),(5), to guarantee the identity
gL=0

i (0) = 1 (it should be noted that gL=2
i (0) = 0). Then

the strengths of the corresponding terms of the force (in
MeV·fm3) are as follows: λ11 = −1.618 × 103, λ12 =
−1.296×103, λ13 = 8.921×102, λ14 = 4.271×101, λ22 =
7.848×102, λ23 = 1.394×103, λ24 = −7.860×102, λ33 =
−7.450 × 102, λ34 = −5.723 × 102, λ44 = 1.865 × 103.
These values show that, though the strengths of different
components vary significantly, only one of them, λ14, is
smaller by two orders of magnitude as compared to the
largest ones. Therefore almost all the terms are impor-
tant. We take several typical components to illustrate the
results.

The profile functions and zero moments are shown in
figs. 6-8. One can see that now the results with increas-
ing cut-off energy from E0 = 0 to E0 = 10 MeV change
more sizably than in the singlet channel, especially in the
surface region. At the same time, the subsequent increase
of E0 up to 20 MeV does not practically influence the G-
matrix, the maximum variation being of a few percent.
Hence, once more one may conclude that the LPA is suffi-
ciently accurate if the cut-off energy is E0 = 10–20 MeV.
But, contrarily to the singlet case, the accuracy of LPA is
rather poor when the model space is limited to E0 = 0,
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Fig. 7. The same as in fig. 3 for the triplet channel.

since at the surface the G-matrix must tend to the off-shell
free T -matrix. But the latter has a virtual pole at small
energy. It is then clear that an accurate account of the
contribution of the single-particle states with small posi-
tive energies is important for a correct description of this
pole behavior. Therefore, these states should be included
into the model space S0. This does occur if one chooses
the cut-off energy E0 ≥ 10 MeV, but it does not occur if
one takes E0 = 0.

Let us now consider the Fermi averaged G-matrix in
the triplet channel, which is a 2 × 2 matrix in the orbital
angular momentum space:

〈GF〉LL′
S=1(X) =

∑
ij

ḠS=1
ij (X) g

(L)
i (k2

F(X)) g
(L′)
j (k2

F(X)),

(28)
where L,L′ = 0, 2. Just as in the singlet case, the quan-
tity Ḡij in eq. (28) has the meaning of the zero moment
“with cut-off”. The components of this matrix are shown
in fig. 9 for all three values of the cut-off energy E0. The
component 〈GF〉00S=1 is significantly larger than those con-
taining L = 2, especially at the surface region where the
form factors g

(2)
i vanish. Again all the components of the

Fermi-averaged G-matrix calculated for E0 = 10 MeV co-
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Fig. 8. The same as in fig. 4 for the triplet channel.

incide practically with those for E0 = 20 MeV, though
deviations from the E0 = 0 case can be noticeable.

6 A simple model for the scalar-isoscalar
Landau-Migdal amplitude in terms of the
free T-matrix

In the framework of the Brueckner theory, the Landau-
Migdal quasiparticle interaction amplitude is expressed in
terms of the G-matrix as follows:

F (r1, r2, r3, r4) =√
Z(r1)Z(r2)Z(r3)Z(r4)G(r1, r2, r3, r4;E = 2µ) , (29)

where Z(r) is the renormalization factor of the single-
particle Green function.

In the standard notation adopted in the FFS theory,
the central part of the Landau-Migdal amplitude reads

F = C0 [f + f ′τ1τ2 + (g + g′τ1τ2)σ1σ2], (30)

where σ and τ are the spin and isospin Pauli matrices. The
normalization factor C0 is the inverse density of states at
the Fermi surface: C0 = (dn/dεF)−1. We shall analyze
here the zero harmonic f0 of the scalar-isoscalar compo-
nent of eq. (30) which is responsible for the central part of

the average nuclear field. In the FFS theory, a strong co-
ordinate dependence of this amplitude was introduced [4]
to explain various types of experimental data. In fact, the
simplest form of such a dependence, proposed in ref. [4], is

f0(r) = f ex
0 + (f in

0 − f ex
0 )

ρ(r)
ρ0

. (31)

Here, ρ(r) is the nuclear density at the point r, and ρ0 =
ρ(r = 0). It is worth to note that different versions of
the interpolation formula for the amplitude f0(r) exist,
but the common feature of all of them is a significant
difference between a large negative external constant f ex

0

and a small (close to zero) internal one, f in
0 .

We shall see now that the typical coordinate depen-
dence of eq. (31) for the scalar-isoscalar Landau-Migdal
amplitude can be approximately obtained within the
Brueckner approach, eq. (29). As far as the Landau-
Migdal amplitude corresponds to the interaction of two
quasiparticles at the Fermi surface, the Fermi averaged
G-matrices, eqs. (26) and (28), appear in the relation for
f0(r) resulting from eq. (29). Going from a slab to the
spherical geometry for a heavy nucleus with a large radius
R � L, after simple spin-isospin algebra, we find

f0(r, E) =
3
16

Z2(r)(γ0(r, E) + γ1(r, E)), (32)
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where we have introduced the dimensionless Fermi-
averaged G-matrices

γ0,1(X,E) =
1
C0

〈GS=0,1
F 〉(X,E) . (33)

Only the main L = L′ = 0 component is retained in the
triplet case.

Up to now, we considered the value of the total perpen-
dicular momentum P⊥. It can be directly used in eq. (32)
only in the asymptotic region where all the particle mo-
menta vanish. Inside the nucleus the Fermi averaging pro-
cedure should include integration over P⊥ from 0 to 2kF.
An accurate method of averaging over P⊥ is not yet devel-
oped but we can use the following approximate recipe. Let
us consider the surface region r � R, where the operator
P 2
⊥ can be replaced by the number P 2

⊥ = L(L + 1)/R2,
L being the total two-particle orbital angular momen-
tum. The integration over P⊥ corresponds to the sum-
mation over all possible values of L. In a heavy nucleus,
the maximum values of the single-particle orbital angular
momenta, lmax = 6–7, hence we get Lmax = 12–14. To
estimate the role of non-zero values of P⊥, we calculated,
following the recipe of ref. [15], the G-matrix in both chan-
nels at the value P 2

⊥ = 0.656 fm−2. The latter is obtained

0

-1

-2

-3

-4
0            2            4             5            6            7            8

r, fm

f  (r)0

Fig. 10. The microscopic scalar-isoscalar Landau-Migdal am-
plitude f0(X) calculated in terms of the G-matrix with zero P⊥
(dash-dotted curve) and non-zero P⊥ (dotted curve) together
with that within the semi-microscopic model in terms of the
free T -matrix (solid curve). The phenomenological amplitude
of the self-consistent FFS theory [6] is shown by the dashed
line.

by substituting the average value L = 6 and R = 8 fm in
the above expression for P 2

⊥.
In addition to the G-matrix, the formula (32) contains

the Z-factor. Calculation of this quantity is beyond the
scope of this article and we use for Z(r) the phenomeno-
logical ansatz of the self-consistent FFS theory [6]:

Z(r) =
2

1 +
√

1 − 4C0α2ρ(r)/ε0
F

, (34)

where ε0
F = (k0

F)2/2m (the normalization value of the
Fermi momentum is k0

F = π2/(mC0) ), and the dimen-
sionless parameter α2 = −0.25.

The scalar-isoscalar amplitude f0(r) calculated accord-
ing to eqs. (32), (34) for zero and non-zero values of P⊥
is shown in fig. 10. They are close to each other in the
inner domain and slightly differ at the surface and in the
asymptotic region. It is obvious that the function f0(r)
corresponding to P⊥ = 0 possesses correct asymptotic be-
haviour, while the one with non-zero P⊥ should be more
correct at the surface and in all the classically allowed
region. Therefore, a reasonable recipe consists in match-
ing these two functions at the surface. It turned out that
the necessary interpolation can be successfully simulated
within a very simple semi-microscopic model in which the
amplitude f0(r) is calculated according to eqs. (32), (34),
but substituting the free T -matrix (at P⊥ = 0) for the G-
matrix. This model amplitude is also drawn in fig. 10.
It should be stressed that this quantity is found by a
very simple calculation because the T -matrix in the co-
ordinate representation can be easily obtained (see, e.g.,
[14,15]). For comparison, the phenomenological scalar-
isoscalar Landau-Migdal amplitude of the self-consistent
FFS theory [6] is also displayed. The model amplitude
is in reasonable agreement with the phenomenological
one. This simple model for the scalar-isoscalar Landau-
Migdal amplitude was recently proposed in ref. [16], but
the analysis was based on the calculation of the G-matrix
within LPA with the “standard” model space (E0 = 0).
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As we have seen above, in this case, the LPA is not
sufficiently correct for the triplet channel. Here, we re-
peated the calculations of ref. [16] for the model space
with E0 = 10 MeV where the LPA is quite accurate for
both channels. For the scalar-isoscalar amplitude, the re-
sults of the advanced calculation of the G-matrix in this
paper are imitated by the free T -matrix even more ac-
curately than in ref. [16]. Thus, this analysis justifies the
simple model for f0(r) proposed in ref. [16].

7 Conclusion

The applicability of the LPA has been analyzed for the
Brueckner G-matrix. Previously [12] this kind of local ap-
proximation proved to be quite accurate for the problem
of the microscopic evaluation of the effective pairing in-
teraction in the 1S-channel. The BG equation for a slab
of nuclear matter has been solved for the singlet 1S and
triplet 3S + 3D channels using the separable representa-
tion [17,18] of the Paris potential. The complete Hilbert
space has been split into two domains separated by the
energy E0. The model subspace S0(E0), in which the two-
particle BG propagator is calculated explicitly, contains
all the two-particle states with both single-particle ener-
gies ελ, ελ′ < E0. In the complementary subspace, S′(E0),
the LPA for the BG propagator has been used. A quali-
tative analysis shows that the accuracy of LPA becomes
higher with increasing E0. It should also be higher for
larger values of the perpendicular total momentum P⊥,
therefore we limited ourselves to the most “dangerous”
case of P⊥ = 0.

For either channel under consideration, a set of calcu-
lations of the G-matrix has been made for different values
of the cut-off energy E0. The LPA has been assumed to be
valid starting from the value of E0 for which the G-matrix
does not practically change any longer. An approximate
independence of results on the value of E0, at a level of
a few percents, was found for E0 = 10–20 MeV for both
channels. It should be mentioned that in the singlet chan-
nel the accuracy of the LPA is sufficiently high even at
E0 = 0, in accordance with ref. [12]. On the contrary, in
the triplet channel the LPA is not practically applicable
for E0 = 0. A similar analysis could be made also for the
channels with L > 0. Estimates show that in this case
conditions for validity of LPA are even better than those
for L = 0.

Although we only considered a separable version of the
Paris potential only, all the physical reasons for a high
accuracy of the LPA remain valid for any realistic NN
potential. We believe that the LPA works pretty well in
the microscopic description of finite nuclear systems.

We used the obtained G-matrix for justifying a simple
microscopic model of the scalar-isoscalar component of the

Landau-Migdal amplitude in terms of the free T -matrix.
In this paper, we limited ourselves to just one value

of the chemical potential µ = −8 MeV which is typical
of stable nuclei. In principle, for smaller values of µ the
analysis should be repeated. However, as some estimates
show, even in the drip line vicinity, where µn → 0 (or
µp → 0) the LPA should be rather good for E0 = 10–
20 MeV in either channel. At the same time, at E0 = 0 it
should become inapplicable even in the singlet channel.
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96590 and No. 00-02-17319 from the Russian Foundation for
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